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An observing system experiment was conducted to measure the impact of withdrawing data 

from the afternoon orbit on global forecast skill.  

ANALYSIS OF AN OBSERVING 
SYSTEM EXPERIMENT FOR 

THE JOINT POLAR SATELLITE 
SYSTEM

by Stephen Lord, GeorGe Gayno, and FanGLin yanG

For more than 40 years, satellite-based observations 
have contributed an increasing amount of infor-
mation on atmospheric temperature and moisture 

structure, surface state, and cloud motion (as a proxy 
for winds). Satellite-based soundings are primarily 
from radiometric instruments measuring different 
parts of Earth’s energy spectrum in the infrared 
(IR) and microwave (MW) regions. More recently, 
observations from the Global Navigation Satellite 
System (GNSS) provide accurate, nonbiased thermo-
dynamic soundings in the stratosphere and much of 

the troposphere through a GNSS radio occultation 
(GNSS-RO) technique. These satellite observations are 
complementary to “conventional” observations from 
radiosondes, surface networks, aircraft, and radars—
all globally distributed but confined primarily to land 
areas and occasional ships. Together, they comprise 
the Global Observing System (GOS), which is critical 
for operational numerical weather prediction (NWP).

While input from the GOS is critical, both the 
NWP forecast model and a global data assimilation 
system (DAS) are also critical for accurate prediction. 
The DAS extracts observed information on tempera-
ture, moisture, wind, and pressure, and combines it 
with information from the forecast model, usually a 
short-term (1–6 h) forecast valid at the analysis time 
(Kalnay 2003), to update the model initial conditions 
for the next forecast cycle. Importantly, the DAS and 
model can also be used to evaluate the impact of 
observations on forecast skill. Two currently used 
techniques are observing system experiments (OSEs) 
and the forecast sensitivity to observations (FSO) 
technique. In an OSE, a DAS and model forecast run 
is conducted using a baseline set of observations; 
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further runs are done but with denying or adding 
observations to measure forecast impact through a 
standard set of verification scores (e.g., Kelly et al. 
2004; Zapotocny et al. 2008; and many others). This 
method can also be used on case studies to isolate the 
observational impact on specific, important meteoro-
logical events [e.g., McNally et al. (2014) for Hurricane 
Sandy (2012)]. More recently, the FSO technique was 
developed. Still using a DAS, a forecast model, and ob-
servations as tools, the FSO seeks to provide informa-
tion on the reduction of (typically 24 hours) forecast 
error, made possible by each of the input observations. 
FSO can be executed using adjoints of the DAS and 
forecast model (e.g., Langland and Baker 2004) or 
through ensemble-based data assimilation techniques 
(e.g., Liu and Kalnay 2008; Ota et al. 2013). Compared 
to OSEs, FSO experiments require considerably 
reduced computational resources but do require ad-
ditional system development and maintenance for the 
adjoints and/or the ensemble-based DAS.

Despite the relatively straightforward nature of 
OSEs and FSOs, it is important to make two further 
comments on factors that may influence OSE and/
or FSO results from different NWP systems. First, 
current operational global 0–5-day predictions are 
very accurate and, consequently, small changes to the 
GOS, such as the loss of one satellite instrument, may 
not produce a large change in forecast skill as shown 
by traditional mean score differences. While results 
have clearly shown that forecast skill in the Southern 
Hemisphere (SH) is more dependent on satellite data 
(e.g., Kelly et al. 2004), it can be more difficult to see 
the impact in the Northern Hemisphere (NH), since 
conventional observations are far more plentiful and 
the impact of satellite data are correspondingly less. 
Second, observing system impacts depend on the DAS 
and the forecast model used in OSE. While most of 
GOS is commonly ingested by international NWP 
systems, data assimilation and model techniques 
differ, and these differences can be important in 
determining details of the OSE impacts.

The current GOS is changing, particularly for the 
satellite contribution. The Joint Polar Satellite System 
(JPSS) is introducing a pair of advanced sounders—the 
Advanced Technology Microwave Sounder (ATMS) 
and the Cross-Track Infrared Sounder (CrIS)—that 
will replace the legacy operational National Oceanic 
and Atmospheric Administration (NOAA) Polar-
Orbiting Operational Environmental Satellite (POES) 
instruments in the afternoon (PM) orbit. The Suomi 
National Polar-Orbiting Partnership (SNPP) launched 
the first copies of these instruments on a National 
Aeronautics and Space Administration (NASA) 

research satellite in October 2011. Since the first 
operational JPSS satellite may not be launched until 
2017, there is concern whether the POES and SNPP 
instruments will cease to function before the JPSS 
instruments are online, which can be up to one year 
after launch. Therefore, the JPSS program requested 
the National Centers for Environmental Prediction 
(NCEP) to provide an OSE to determine the forecast 
impact of losing the data from both the POES and JPSS 
instruments in the PM orbit.

This paper presents results from an OSE designed 
to demonstrate the impact of radiometric sounder 
data from the PM orbit in the JPSS era. Such OSE 
impacts for a possible JPSS data gap have previously 
been reported in the literature (e.g., McNally 2012; 
Garrett 2013; Cucurull and Anthes 2015), but each 
has used a different snapshot of GOS and a different 
experimental focus. Garrett (2013) focused on re-
placement of the current MW sounder constellation 
by ATMS, which is only part of the JPSS instrument 
impact. More extensive work by McNally (2012) 
focused on a two-orbit configuration, and Cucurull 
and Anthes (2015) added possible GNSS-RO impacts 
to the JPSS sounder issue. Each of these studies found 
minor impacts in standard verification scores to the 
loss of PM orbit data. Here, we present a similar OSE 
design to McNally (2012), but it is executed with the 
NCEP Global Data Assimilation System (GDAS) 
over a much longer period, thereby allowing a more 
robust analysis of statistical significance and possible 
seasonal changes in impact. Anticipating that the 
results will be qualitatively similar to those from both 
the McNally (2012) and Cucurull and Anthes (2015) 
work, we give an overview of all scores to place them 
in context of previous results. More importantly, 
however, we present a more detailed statistical analy-
sis of the representative 500-hPa geopotential height 
anomaly correlation (Z500AC) skill score results that 
relates the observing system impacts to historical ac-
curacy data. This analysis goes beyond the traditional 
comparison of mean skill scores by looking at the 
distribution of skill scores from each OSE run and 
how they change as a result of retaining or removing 
instruments in the PM orbit. We find that such an 
analysis can be used quantitatively to assess changes 
in risk associated with any OSE results or, more gener-
ally, any comparison between NWP systems.

The “Current and future polar-orbiting satellite 
system” section describes current and future polar-
orbiting observing systems, and the “Measuring the 
impact of observing systems on numerical weather 
prediction” section describes the OSE and FSO tech-
niques used to measure observing system impacts. The 
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OSE system used in this study, 
including the data assimila-
tion and forecast system, is 
described in the “Description 
of the NCEP OSE system” sec-
tion. The “OSE setup” section 
describes the control and ex-
periment, and the next several 
sections present the evalua-
tion procedures, overview of 
results, and a more detailed 
analysis of the Z500AC skill 
score distributions, respective-
ly. The last section contains the 
summary and a short discus-
sion. Appendix A summarizes 
the global observations avail-
able for this OSE, and appen-
dix B provides some further 
background information and 
context for interpreting the 
forecast impacts presented in 
this paper.

THE CURRENT AND 
FUTURE POLAR-OR-
BITING SATELLITE SYS-
TEM. The satellite-based 
observing system (Fig. 1) is 
a critical component of GOS 
that supports routine opera-
tional weather prediction. For reference, a list of the 
primary GOS observations used by NCEP in 2012–13 
is in appendix A. Because conventional observing 
systems, such as radiosondes, are mostly confined to 
continental areas and a few isolated islands and mo-
bile platforms aboard ships, oceanic thermodynamic 
observations throughout the vertical atmospheric col-
umn are obtained almost exclusively from radiometric 
sounders on polar-orbiting satellites. Geostationary 
satellites, stationed over the equator at various longi-
tudes, provide valuable imagery over the global domain 
and derived wind estimates from that imagery, but 
currently they carry only low-vertical-resolution in-
frared sounders that do not provide much information 
useful for NWP. Polar-orbiting satellites also host the 
GNSS-RO instruments that provide highly accurate 
and complementary atmospheric soundings.

Global coverage by atmospheric sounders is 
achieved through sun-synchronous (polar) orbits with 
different nominal equatorial crossing times (Fig. 1). 
Three polar orbits—PM, midmorning (mid-AM), 
and early morning (early AM)—provide complete 

global coverage every 6 h, while two orbits cover ap-
proximately 85% of Earth’s surface (Fig. 2). Current 
international agreements have NOAA providing 
coverage from the PM orbit and the Meteorological 
Operational (MetOp) system, sponsored by the 
European Organisation for the Exploitation of 
Meteorological Satellites (EUMETSAT), occupying 
the mid-AM orbit.

In the United States, polar-orbiting instruments 
have been deployed for more than 40 years, but the 
current generation of operational NOAA POES in-
struments has reached the end of its life cycle. The 
last of the NOAA operational polar-orbiting satellites 
(NOAA-19) was launched in 2009 and hosts a pair of 
MW sounders [the Advanced Microwave Sounding 
Unit, instrument A (AMSU-A), and the Microwave 
Humidity Sounder (MHS)] and an IR sounder [the 
High Resolution Infrared Radiation Sounder (HIRS)]. 
Some POES instruments launched on previous NOAA 
satellites are still operating (Table A1) and their data 
are also used operationally. The POES instruments 
are being replaced by ATMS and CrIS, which have 

Fig. 1. The satellite-based observing system. Polar-orbiting satellites (red) 
are distinct from those in geostationary orbits (white) and are defined by 
their equatorial crossing time. Being in a sun-synchronous orbit, the satellite 
achieves global coverage as the Earth rotates beneath the orbit, which takes 
approximately two hours to complete. NOAA operational satellites gener-
ally occupy the PM orbit, while MetOp (EUMETSAT) satellites occupy the 
mid-AM orbit. Research satellites from NASA, the European Space Agency 
(ESA), and the European Commission (EC) may occupy either orbit. Opera-
tional U.S. Department of Defense (DOD) satellites have occupied a third 
(early AM) orbit (not shown). [Courtesy of NOAA/National Environmental 
Satellite, Data, and Information Service (NESDIS).]
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improved instrument characteristics, including high-
er horizontal and vertical resolution and lower noise 
(e.g., Goldberg et al. 2013; Kim et al. 2014; Han et al. 
2013; Zavyalov et al. 2013). In addition, the NASA re-
search satellite Aqua provides observations from the 
hyperspectral Atmospheric Infrared Sounder (AIRS) 
and a partially operating AMSU-A in the PM orbit. In 
Europe, EUMETSAT launched its first polar-orbiting 
satellite MetOp-A in October 2006 with an AMSU-A, 
an MHS, and the hyperspectral Infrared Atmospheric 
Sounding Interferometer (IASI). Also on MetOp-A 
are the Advanced Scatterometer (ASCAT), the GNSS 
Receiver for Atmospheric Sounding (GRAS), and the 
Global Ozone Monitoring Experiment (GOME) for 
measuring surface winds, GNSS-RO, and ozone, re-
spectively. MetOp-B was launched in September 2012 
with the same sounding instruments. Currently, the 
Defense Meteorological Satellite Program (DMSP) 

Fig. 2. Polar-orbiter observation coverage, illustrated using AMSU-A as an example, for a 6-h window centered 
on 1200 UTC 1 Jun 2011. Coverage shows the (a) PM, (b) mid-AM, (c) mid-AM and PM, and (d) mid-AM, PM, 
and NOAA-15 orbital combinations. Because of its long-term drift from the PM orbit, NOAA-15 is a proxy for 
the early-AM coverage. Colors depict differences between the observed channel-9 bias-corrected radiance 
value and the collocated GFS background (6-h forecast) value calculated with the operational CRTM.

satellites occupy the early-AM orbit and host the 
Special Sensor Microwave Imager/Sounder (SSMIS), 
which has some sounding channels similar to those 
on AMSU-A. However, the DMSP platforms are also 
nearing the end of their life cycles and the future of 
instrument(s) in the early-AM orbit is uncertain.

The future operational polar-orbiting satellite 
sounding system therefore will be primarily com-
posed of JPSS and MetOp satellites in the PM and 
mid-AM orbits, respectively. Each satellite will have 
an MW and hyperspectral IR sounder, thereby form-
ing a two-orbit, four-sounder (2O–4S) configuration. 
In the PM orbit, ATMS and CrIS have strong creden-
tials, but nevertheless they are of approximately the 
same sounding capability as the current AMSU-A/
MHS and AIRS. It is important to take note of these 
similarities in designing impact experiments for the 
future polar-orbiting satellite system.
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MEASURING THE IMPACT OF OBSERV-
ING SYSTEMS ON NUMERICAL WEATHER 
PREDICTION. There is considerable interest in the 
meteorological community and elsewhere about the 
impact of various GOS components on daily operation-
al weather prediction skill, particularly in this period 
of rapid change in the satellite observing system. The 
World Meteorological Organization has sponsored in-
ternational workshops every 4 years (e.g., Böttger et al. 
2004; Pailleux et al. 2008; Andersson and Sato 2012) to 
review progress in observing system impacts for NWP. 
Testing the impact can be done in several ways by OSEs 
and the FSO technique, which differ in their approach 
but nevertheless use the power of modern data assimi-
lation systems as their core software. In a typical OSE 
(e.g., Kelly et al. 2004; Zapotocny et al. 2008; McNally 
2012; Cucurull and Anthes 2015), a control data assimi-
lation and forecast experiment is conducted with all 
observations, and a second experiment is run without 
the observations of interest or with new observations 
added. Differences in performance skill are typically 
measured with standard scores such as the Z500AC 
(WMO 2010), root-mean-square (RMS) differences 
against both gridded analyses (GRD; RMS-GRD) and 
observations (OBS; RMS-OBS), and equitable threat 
scores (ETS) for precipitation (Wilks 1995).

FSO calculations measure the percentage con-
tribution to the reduction of forecast error from 
each observation source (Langland and Baker 2004; 
Cardinali 2009; Gelaro and Zhu 2009; Ota et al. 2013; 
Lorenc and Marriott 2014). While OSEs and FSO 
studies have very different theoretical and algorith-
mic bases, they give consistent results on the relative 
importance of the most impactful observing systems 
(Gelaro and Zhu 2009) if the same data assimilation 
system is used. Nevertheless, OSEs and FSO stud-
ies from different data assimilation systems are not 
entirely consistent. For example, Joo et al. (2012) 
and Ota et al. (2013) report different rank orders of 
sensitivity using an FSO technique (Table 1). Some 
reasons for these discrepancies are discussed below.

While the design and execution of OSEs and FSOs 
are relatively straightforward, the results and their 
interpretation can be subject to many factors, includ-
ing the representativeness of the analysis and forecast 
sample, and the overall quality of the analysis–forecast 
system (A-FS), including any forecast model bias. As 
also discussed by Cucurull and Anthes (2015), these 
factors cause forecast skill to depend on the season and 
meteorological conditions, so that details of observa-
tion impacts can also depend on the time period chosen 
for the experiment. To mitigate this dependency and to 
expose the NWP system to as many different weather 

regimes and observations as practical, experiments of 
at least 4–6 weeks for both winter and summer seasons 
are often conducted. Some OSEs are configured as 
case studies and can thereby directly illustrate forecast 
impacts on societally important meteorological events 
(e.g., McNally et al. 2014). However, case studies do not 
provide a statistically significant sample for overall 
impact and can often show no impact or even negative 
impact (the forecast is better without the observations 
in question; J. Yoe 2012, personal communication).

Accuracy of the A-FS and the details of observation 
processing are other important factors in determin-
ing the impact of observations. Some of these details 
include error assigned to the various observation 
types, quality control techniques and thresholds, and 
data thinning. Since the purpose of assimilating ob-
servations is to correct initial condition errors, a less 
accurate A-FS or larger assigned observation error 
may require more or different observations to achieve 
those corrections and, therefore, the overall observa-
tion impact can differ. Finally, the GOS information 
derives from different sources, some of which may 
add complementary information (as they have differ-
ent observing techniques, and horizontal and verti-
cal resolutions), but some may add resilience to the 
GOS by providing increased sampling over the globe. 
In the latter case, loss of one instrument of several 
similar ones can often be compensated by the DAS 
extracting additional information from the remaining 
instruments (Andersson and Sato 2012). For example, 
in 2012–13, five AMSU-A instruments provided op-
erational data from (effectively) three different orbits 
(Table A1). In this case, withdrawal of one or more 
AMSU-A instruments may not impact the mean 
forecast skill in an OSE. In summary, quantitatively 
comparing OSEs should be done with caution, with an 
emphasis on a thorough understanding of the results.
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Table 1. Contribution to forecast model er-
ror reduction (from high to low) of selected 
major global observing systems listed by the 
Joo et al. (2012) and Ota et al. (2013) stud-
ies. These studies also considered satellite 
sounders but differences in their definitions 
precluded a side-by-side comparison.

Order Joo et al. Ota et al.

1 Radiosonde Aircraft

2 Aircraft Radiosonde

3 Land surface AMVs

4 AMVs GNSS-RO

5 Marine surface Land surface

6 GNSS-RO Marine surface



DESCRIPTION OF THE NCEP OSE SYSTEM. 
Model and data assimilation. The NCEP operational 
global modeling system, as implemented on 22 May 
2012, was used to execute the OSEs; its main com-
ponents are the Global Forecast System (GFS), ver-
sion 9.0.0, and the Gridpoint Statistical Interpolation 
analysis system (GSI), version 3.3. The GFS 9.0.0 is a 
global atmospheric spectral prediction model at 27-km 
(T574) resolution and 64 vertical levels (see www.emc 
.ncep.noaa.gov/GFS/doc.php for details). The GSI is 
a 3D hybrid (ensemble–variational) analysis system 
that provides the initial condition for the GFS from a 
blend of a first guess (a previous 9-h forecast) and both 

conventional and satellite observations within 
a 6-h data window, ±3 h from the analysis time 
(Parrish and Derber 1992; Derber and Wu 
1998; Kleist et al. 2009). The background error 
is estimated by a GSI ensemble composed of 
80 members executing at 55-km (T254) reso-
lution (Kleist and Ide 2015; Wang et al. 2013). 
An ensemble Kalman filter (EnKF) generates 
flow-dependent, ensemble-based background 
error covariance estimates and a hybrid algo-
rithm, using both static and ensemble-based 
background error estimates, is used to deter-
mine the analysis.

Satellite observations are assimilated as 
clear-sky radiances (Derber and Wu 1998; 
McNally et al. 2000), using the Community 

Radiative Transfer Model (CRTM) from the Joint Center 
for Satellite Data Assimilation (Chen et al. 2008, 2010). 
Quality control rejects cloud-contaminated observa-
tions detected in the infrared sensor data (Eyre and 
Menzel 1989). For thin clouds in the microwave, the 
retrieved cloud liquid water (Grody et al. 2001) is used 
as a bias correction predictor to remove the cloud ra-
diative effect. GNSS-RO observations were assimilated 
as in Cucurull and Derber (2008) and later upgraded 
(Cucurull 2010; Cucurull et al. 2013).

The OSE was run using the same analysis–forecast 
(“cycled”) configuration as NCEP’s operations; a brief 
summary of that procedure follows. Four times per 
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Table 2. List of polar-orbiting observations selected 
for the CNTL and NOPM experiments.

Observing 
system

Orbit CNTL NOPM

AMVs (Aqua) PM Yes No

AMVs (Terra) AM No No

MetOp-A ASCAT Mid-AM Yes Yes

MetOp-A IASI Mid-AM Yes Yes

MetOp-A AMSU-A Mid-AM Yes Yes

MetOp-A MHS Mid-AM Yes Yes

Aqua AIRS PM Yes No

NOAA-19 AMSU-A PM Yes No

NOAA-19 MHS PM Yes No

Table 3. Standard verification scores for NH, SH, TR, CONUS, NA, and various hurricane basins. All veri-
fication is against ECMWF analyses, except for precipitation, hurricane track, and RMS vs observations.

Abbreviation Score

NH-Z500-AC 500-hPa geopotential height anomaly correlation, NH and SH, for 24–240-h 
forecast periodSH-Z500-AC

NH-MSLP-AC Mean sea level pressure anomaly correlation, NH and SH, for 24–240-h fore-
cast periodSH-MSLP-AC

NH-T-RMS-GRD RMS error for temperature, NH and SH, for 24–240-h forecast period vs grid-
ded analysis every 50 hPa from 850 to 100 hPaSH-T-RMS-GRD

NH-W-RMS-GRD RMS error for wind, NH, SH, and TR, for 24–240-h forecast period vs gridded 
analysis every 50 hPa from 850 to 100 hPaSH-W-RMS-GRD

TR-W-RMS-GRD

CONUS PRC 24-48h ETS for precipitation over CONUS for 24–48- and 60–84-h forecast periods

CONUS PRC 60-84h

Hur-TRK-ATL Hurricane track errors for Atlantic basin

Hur-TRK-EPAC Hurricane track errors for east Pacific basin

NH-W-RMS-OBS 24-48h RMS error of wind vs radiosonde observations for TR, NH, SH, and NA for 
24–48-h forecast period and for every 25 hPa from 1000 to 100 hPaSH-W-RMS-OBS 24-48h

TR-W-RMS-OBS 24-48h

NA-W-RMS-OBS 24-48h



day (0000, 0600, 1200, and 
1800 UTC), at approximately 
3 h after cycle time, the GSI 
creates initial conditions for 
the GFS forecast model, which 
is run to 16 days. This is known 
as the “GFS” cycle. Then, at 
approximately 6 h after cycle 
time, the GDAS cycle begins 
with the GSI, creating another 
analysis using additional, late 
arriving data unavailable to the 
GFS cycle. The GDAS analysis 
is the initial condition for a 9-h 
forecast that serves as the first 
guess for the next GFS and 
GDAS cycles.

Observations selection. The 
observations selection for the 
OSE follows closely the choices 
of McNally (2012), bearing in 
mind that that study covered 3 months (December–
February) of winter 2009/10. Conventional observa-
tions of all types (Table A1) are assimilated in all ex-
periments, including globally distributed radiosondes, 
aircraft, and both overland and marine surface obser-
vations. Satellite data from geostationary and GNSS-
RO sources are also assimilated in all experiments. 
Polar-orbiting instruments are selected as follows (see 
Table A1) and as summarized in Table 2. To simulate 
the 2O–4S configuration in the future JPSS era, MetOp 
(IASI, AMSU-A, and MHS) instruments are used from 
the mid-AM orbit and in the PM orbit Aqua (AIRS) 
and NOAA-19 (AMSU-A and MHS) are selected as 
the PM sounding instruments for the OSE control 
(CNTL) run. Since the experiment was designed before 
the SNPP CrIS was assimilated operationally by NCEP, 
we used Aqua AIRS, in the PM orbit as proxy for the 

CrIS.1 Note that AMSU-A and MHS combined have 
approximately the same spectral coverage as ATMS. 
Note also that MHS is not present on Aqua and that 
Aqua AMSU-A does not have a complete set of chan-
nels operating, thereby making NOAA-19 instruments 
the preferred MW choice for the PM orbit. While we 
recognize that ATMS and CrIS are, in fact, superior 
instruments, we do not expect an OSE using these 
NOAA-19 and Aqua proxies to yield substantially dif-
ferent results. In the no PM orbit (NOPM) OSE run, 
which simulates the absence of data in the PM orbit, all 
CNTL observations from NOAA-19 and Aqua [AIRS 
and atmospheric motion vectors (AMVs)] are omitted 
from the data assimilation under the assumption that 
neither sounders nor an imager (for AMVs) will be in 
orbit for the NOPM scenario. AMVs from Terra were 
not available over the OSE time period. The MetOp 
scatterometer, ASCAT, was used in all runs.

For future reference, note that NCEP operations 
used the following additional satellite data (see 
Table A1): Aqua (AMSU-A), NOAA-18 (AMSU-A, 
MHS), NOAA-15 (AMSU-A), and HIRS on both 
NOAA-17 and NOAA-19. NOAA-18 observations are 
in the PM orbit (same as Aqua and NOAA-19), so they 

Fig. 3. Time series of 5-day Z500AC (top) NH and (bottom) SH scores for 
CNTL (red), NOPM (green), and OPS (black) forecasts at 0000 UTC for the 
period 1 Aug 2012–15 Feb 2013. Mean scores are also shown.

1 For the MW instrument, we used NOAA-19 AMSU-A and 
MHS instead of ATMS because it was originally planned to 
run an additional experiment to substitute ATMS for the 
NOAA-19 MW instruments. However, this experiment was 
never executed due to the unavailability of computing and 
personnel resources.
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Table 4. Statistical breakdown (%) of highest 
and lowest Z500AC scores among the CNTL, 
NOPM, and OPS runs for each verification 
date accumulated hemispherically. Each 
hemisphere had 293 cases.

OPS CNTL NOPM

NH

 Highest 40.2 34.5 25.3

 Lowest 32.4 30.4 37.2

SH

 Highest 39.2 34.1 26.6

 Lowest 26.3 27.0 46.7



are largely redundant and therefore 
add less additional information for 
data assimilation (EUMETSAT 2011). 
Compared to the hyperspectral infor-
mation from AIRS and IASI, HIRS 
data provide relatively insignificant 
information. NOAA-15 data cover-
age, on the other hand, does con-
tribute by filling the uncovered area 
between the AM and PM orbits, so it 
effectively is an early-AM instrument 
as noted earlier (Fig. 2). NCEP did not 
use DMSP SSMIS data operationally 
until February 2015 and therefore the 
data were not included in this OSE.

OSE SETUP. The GDAS for both 
the CNTL and NOPM runs began 
on 0000 UTC 15 July 2012 and ended 
7 months later on 0000 UTC 15 Feb-
ruary 2013. Results in this paper cover 
the period 0000 UTC 1 August to the 
end of the runs in February; the July 
period is a spinup for all runs. The 
GFS forecast was run four times daily 
from the experiment’s beginning until 
3 November 2012 in order to generate 
the maximum number of global fore-
casts with hurricanes; thereafter, until 
15 February 2013, the GFS forecast 
was run once per day at 0000 UTC. 
A total of 293 10-day forecasts2 were 
made. While typical NCEP OSEs are 
run for 4–6 weeks for two seasons, this 
OSE extends for 7 months over three 
seasons and is one of the longest per-
formed by NCEP. As such, it provides 
an opportunity to measure the impact 
of observations across different sea-
sons with a continuous GDAS run and 
to assess the statistical significance 
with a very large number of cases. 
The CNTL and NOPM experiment 
differ only in the polar-orbiting ob-
servations omitted from the data as-
similation in the NOPM experiment 

Fig. 4. Average (top) NH and (bottom) SH 0000 UTC Z500AC forecast 
scores for 1–10 days over SON for CNTL and NOPM. The lower panel of 
each plot shows the difference between CNTL and NOPM. Differences 
outside of the boxes are statistically significant at the 95% level.

2 While the GFS forecast is run to 16 days in 
operations, the 10-day forecast for this OSE 
covers the most skillful part of the forecast 
that is most sensitive to, and appropriate for 
showing, the impact of observations and 
initial conditions on forecast accuracy.
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(Table 2). Furthermore, we en-
hance the evaluation of the CNTL 
and NOPM runs with results 
from NCEP’s operational (OPS) 
run, which was executed with the 
same model and data assimilation 
system and included all the obser-
vation sources listed in appendix A 
(see Table A1).

EVALUATION PROCE-
DURES. A complete evaluation 
of all the OSE results is very com-
plex and demanding, and is be-
yond the limited scope of this pa-
per. As noted earlier, differences in 
skill are customarily measured by 
standard NWP scores, including 
the Z500AC, which is an overall 
measure of the skill (appendix B). 
Other standard statistical measures (Table 3) are sum-
marized here and can provide supporting evidence by 
measuring different aspects of the model forecast out-
put, for example, precipitation ETS and hurricane track 
errors. The evaluation covers almost three seasons and 
thereby captures seasonal variability, if any. Choosing 
representative case studies is a very subjective process, 
with its own challenges, and will not be attempted here 
since the focus is on the quantitative and objective 
information that can be gleaned from a more detailed 
analysis of the Z500AC score alone.

Standard verification scores (Table 3) were used 
to evaluate forecast skill for each run. Anomaly cor-
relation and some RMS scores were verified against 
analyses. To provide an independent analysis estimate, 
the European Centre for Medium-Range Weather 
Forecasts (ECMWF) analysis was used as verifica-
tion for geopotential height, temperature, and winds. 
Forecast verification for longer than 3 days using either 
the GDAS or a multicenter analysis does not change 
the results presented here simply because the forecast 
errors are much larger than any analysis differences. 
To verify precipitation, the NCEP Climate Prediction 
Center daily precipitation analysis, assembled from 
over 10,000 conterminous United States (CONUS) 
24-h rain gauge reports, was used. Hurricane track 
scores, verified against National Hurricane Center 
best-track data for the Atlantic (ATL) and east Pacific 
(EPAC) basins, were accumulated from the four-per-
day forecasts through 120 h. Short-term (24–48 h) 
temperature and wind forecasts were also verified 
against radiosonde observations in the NH, SH, trop-
ics (TR), and North America (NA). All other statistics 

were generated from forecasts initiated at 0000 UTC 
1 August 2012 to 0000 UTC 15 February 2013 for 
0000 UTC and 1200 UTC 1 August to 1200 UTC 
2 November 2012 for 1200 UTC. Statistical signifi-
cance at the 95% confidence level was determined by 
a Student’s t test (Hogg and Craig 1978) for all scores 
except for precipitation ETS listed in Table 3. For ETS, 
a Monte Carlo resampling method (Hammersley and 
Handscomb 1975) with 10,000 realizations was used to 
determine its confidence level. A qualitative scorecard 
was generated to provide an overview of all results.

For an additional perspective on the OSE im-
pacts, these scores are compared with the annual 
distribution of 5-day Z500AC scores from the op-
erational GFS (appendix B), the annual mean his-
tory of which is characterized by an increase of skill 
over time (Fig. B1). Furthermore, the distribution of 
Z500AC scores (Fig. B2) shows that, over the period 
1996–2014, the percentage of low scores has decreased 
remarkably, while the percentage of high scores has 
increased. In this paper, we explore whether similar 
trends accompany changes to the satellite observing 
system, such as those tested with this OSE.

OVERALL RESULTS. Since a quantitative compar-
ison of OSE results creates an enormous set of scores for 
different forecast variables, times, and model levels, the 
focus here is on the 5-day Z500AC score because it is an 
overall indicator of forecast quality in the extratropics 
and is commonly used for NWP model comparisons 
(Simmons and Hollingsworth 2002).

The NH and SH 5-day Z500AC time series 
(Fig. 3) shows that each of the CNTL, NOPM, 

Fig. 5. Qualitative scorecard summary of OSE 1–10-day forecast per-
formance for CNTL vs NOPM over the experimental period. Colors 
indicate an overall qualitative assessment of whether the CNTL or 
NOPM score was better for all forecast times and the associated sta-
tistical significance, if any. Results are divided into August, SON, and 
DJF periods. See Table 3 for definitions of each score.
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and OPS runs have the highest or lowest scores at 
multiple times throughout the experiment period. 
Although there are episodic outlier results for the 
CNTL and NOPM runs—for example, late August 
in the SH (NOPM), from mid-September through 
mid-October in the NH (NOPM), and late January 
in the NH and SH (CNTL)—it appears visually 
that the performance of each of the three runs is 
almost indistinguishable from the others; that 
is, no run is superior throughout the entire time 

series. To confirm this fact, scores were compared 
head to head for each verification time. A frequency 
breakdown of the highest and lowest scores for all 
runs (Table 4) shows that the NOPM produces the 
smallest percentage of the highest scores in both 
hemispheres and the largest percentage of the lowest 
scores. The latter impact is stronger in the SH, where 
there are many fewer nonsatellite observations and 
the inf luence of satellite data is correspondingly 
larger as expected.

Over the entire experiment, the mean 
5-day Z500AC score for 0000 UTC ini-
tial conditions (Fig. 3) is 0.005 and 0.013 
larger for CNTL than for NOPM in the 
NH and SH, respectively—about equal to 
approximately one year of increase in the 
GFS annual mean Z500AC (appendix B). 
While the differences in CNTL and NOPM 
5-day Z500AC scores appear to be small, if 
not underwhelming, they persist through-
out the entire 1–10-day forecast period 
(Fig. 4) and are statistically significant 
at the 95% confidence level for 1–8 days 
in the NH and 1–5 days in the SH over 

Fig. 6. Skill distribution of 5-day Z500AC scores for CNTL, NOPM, and OPS scores for (top) 0000 and (bottom) 
1200 UTC in (left) NH and (right) SH. The 1200 UTC runs were produced only through 3 Nov 2012, so they 
do not include winter scores. Scores from each experiment are distributed into 20 bins of width 0.05 between 
0.025 and 0.975.  The abscissa is the Z500AC binned score, and the ordinate is the percentage in each bin.

Table 5. Quintile cutoff values for 5-day Z500AC for 
CNTL based on the 293 cases, including 0000 and 
1200 UTC; e.g., the lowest quintile for the NH has a 
maximum value of 0.835 931.

Category 
(%) Description

Upper cutoff value

NH SH

<20 Worst 0.835 931 0.814 969

21–40 — 0.869 417 0.844 165

41–60 — 0.892 238 0.869 863

61–80 Good 0.915 522 0.895 398

81–100 Best 1.000 000 1.000 000
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the September–November 
(SON) part of the experi-
ment. From December to 
February (DJF; not shown), 
the CNTL Z500AC scores 
were significantly higher for 
1–10 days only in the SH. In 
August (also not shown), the 
NH Z500AC scores were not 
significantly different, but the 
CNTL score was significantly 
higher for 1–3 days in the SH.

The comparison of overall 
CNTL and NOPM 1–10-day 
forecast performances is 
summarized by a scorecard 
(Fig. 5) showing superior-
ity and any statistical signifi-
cance for all scores (Table 3) 
over three subperiods: August 
only (AUG), SON, and DJF. 
In the NH, the CNTL is con-
sistently superior at all fore-
cast times for Z500AC, mean 
sea level pressure anomaly 
correction (MSLP-AC), and 
RMS-GRD scores, but it is significantly better for SON 
only. In the SH, where differences between the CNTL 
and the NOPM are larger, the CNTL is significantly 
better for both SON and DJF. CONUS precipitation 
scores for the CNTL are either neutral or insignifi-
cantly better for most subperiods, but they are worse 
for 60–84 h in DJF. Tropical RMS-GRD wind scores 
are not significantly better. Hurricane track errors 
for the CNTL are better in the ATL basin but neutral 
in the EPAC basin. A greater number of scores are 
statistically significant in the SH than in the NH, as 
might be expected due to the higher reliance on satellite 
data in the SH. Overall, statistically significant results 
are mostly found in SON and DJF but rarely in AUG, 
presumably because the number of AUG verifying 
times is much smaller. RMS-OBS scores for 24–48 h 
are mostly neutral (or not significant), the exception 
being SH winds. Interestingly, the statistical signifi-
cance for NH Z500AC and other scores changes from 
significant in SON to insignificant in DJF; the reason 
for this change is not readily apparent.

The OPS mean 0000 UTC Z500AC score for the 
entire experimental period is 0.002 and 0.001 higher 
than CNTL in the NH and SH, respectively (Fig. 3). 
Compared to the CNTL experiment for all verification 
dates, OPS produces about 5% more instances in both 
hemispheres when it has the highest score (Table 4), 

but OPS also has about the same fraction of the lowest 
scores. Despite having about the same fraction of the 
lowest scores in a head-to-head comparison, it is inter-
esting to note that the OPS time series also does not 
have any episodic low-score outliers. We speculate that 
this additional resilience of the OPS observing system 
(Andersson and Sato 2012), by having more AMSU-A 
instruments in orbit relative to the future 2O–4S con-
figuration, has the potential to increase skill marginally 
in the time mean, but more importantly it may reduce 
the possibility of an episodic low-score forecast.

ANALYSIS OF SKILL DISTRIBUTION. After 
accounting for seasonal skill changes by collecting 
scores over a calendar year, the Z500AC skill dis-
tribution appears to be characteristic of a particular 
NWP system (appendix B). GFS improvements over 
the period 1996–2014 have resulted in a reduction 
of low scores and an increase in high scores. Since 
changing the observing system constitutes a change 
to the NWP system, we are motivated to apply the 
skill distribution analysis described in appendix B 
to the CNTL, NOPM, and OPS runs.

The OPS and CNTL skill distributions are very simi-
lar (Fig. 6), except at 1200 UTC in the NH, and markedly 
different from NOPM. The impact of removing the PM 
orbit is clearly seen as a shift in the distribution toward 

Fig. 7. Comparative fraction of 5-day NOPM and OPS Z500AC scores in each 
of the quintiles defined by Table 5 for the NH (blue and red) and SH (green 
and purple). Comparison measures the percentage increase or decrease of 
NOPM and OPS scores in each quintile relative to CNTL, which is (by con-
struction) equally populated in each quintile.
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Table A1. Observing systems used by the NCEP operational GDAS in 2012–13. Pibals = pilot balloons. 
MDCRS = Meteorological Data Collection and Reporting System. AMDAR = Aircraft Meteorological 
Data Relay. ASOS = Automated Surface Observing System. AWOS = Automated Weather Observ-
ing System. AVHRR = Advanced Very High Resolution Radiometer. SBUV/2 =  Solar Backscatter 
Ultraviolet. MODIS = Moderate Resolution Imaging Spectroradiometer.  COSMIC-1 = Constellation 
Observing System for Meteorology, Ionosphere and Climate–1. GRACE-A = Gravity Recovery and Climate 
Experiment–A. SAC-C = Satélite de Aplicaciones Cientificas–C. C/NOFS = Communication/Navigation 
Outage Forecasting System. Earth Observation System–Aura = Aura. OMI = Ozone Monitoring Instru-
ment. GOES = Geostationary Operational Environmental Satellite. Meteosat = Meteorological Sat-
ellite. SEVIRI = Spinning Enhanced Visible and Infrared Imager. JMA = Japan Meteorological Agency. 
MTSAT = Multifunctional Transport Satellite.

Platform Instrument/measurement

Conventional

Soundings Balloon Radiosonde

Ship Radiosonde

Pibals Wind

Profiler Wind

Commercial aircraft MDCRS Wind, temperature

Canadian AMDAR Wind, temperature

European AMDAR Wind, temperature

Pilot reports Wind, temperature

Land surface Airport surface data Surface meteorology

ASOS and AWOS Surface meteorology

Mesonets Surface meteorology

Marine Ship Surface meteorology, SST

Moored buoy Surface meteorology, SST

Drifting buoy Surface meteorology, SST

Hurricane Dropsondes Wind, temperature, moisture, pressure

Military reconnaissance data Wind, temperature, moisture, pressure

Satellite

NOAA POES NOAA-19 AMSU-A

HIRS

MHS

AVHRR

SBUV

NOAA-18 AMSU-A

MHS

SBUV

NOAA-17 HIRSa

SBUV

NOAA-15 AMSU-A

EUMETSAT (polar orbiting) MetOp-A IASI

AMSU-A

MHS

HIRS

GOME

GRAS

ASCAT
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Table A1. Continued.

Platform Instrument/measurement

NASA Aqua AIRS

AMSU-A

MODIS (AMVs)

SNPP ATMS

GNSS-RO COSMIC-1 RO

TerraSAR-X RO

GRACE-A RO

SAC-C RO

C/NOFS RO

NASA Aura OMI

NOAA GOES GOES-13 Sounder

GOES-15 Sounder

Imager (AMVs)

EUMETSAT Meteosat-10 SEVIRI (Imager)

SEVIRI (AMVs)

Meteosat-7 Imager (AMVs)

JMA MTSAT-2 Imager (AMVs)
a NOAA-17 HIRS was assimilated until 13 Dec 2012.

increased frequency of low scores for both 0000 and 
1200 UTC and in both hemispheres. It is more notice-
able in the SH, where the influence of satellite data is 
larger and the time-mean loss of skill due to removing 
the PM orbit is correspondingly larger. Indeed, mean 
skill differences over the experimental period due to loss 
of the PM orbit (Fig. 4) show up more clearly in Fig. 6 as 
shifts in the NOPM skill distribution that are particu-
larly evident at the tails of the distribution, that is, for the 
lowest and highest forecast scores. The shortened 1200 
UTC time series does not include November–February 
cases, resulting in a smaller sample size by more than 
50% and a broader NH skill distribution as shown 
(Fig. 6, bottom left) that is most likely a result of the 
smaller sample. The impact of additional instruments 
in OPS, relative to the CNTL, is present in the form of 
slightly more higher-than-average scores in the NH 
and fewer low scores in the NH and SH at 0000 UTC.

To quantify the abovementioned results, we divide 
the CNTL score distribution into quintiles, each with 
20% of the total number of forecast scores (Table 5). 
The shape of this CNTL distribution is described by 
the quintile boundaries and is a reference against 
which the NOPM and OPS are then compared. For the 
sake of brevity, we label forecasts in the lowest quintile 
as the “worst”3 of the CNTL distribution and the two 

highest quintiles as the “good” and “best” forecasts, 
respectively. Measuring the shifts of both NOPM and 
OPS skill distributions relative to the reference CNTL 
quintiles gives quantitative statements about the tails 
of the distributions, which (as noted previously) rep-
resent the probability of a worst or best GFS forecast.

The changes in skill distributions (Fig. 7) are cal-
culated by determining the percentages of NOPM and 
OPS forecasts in each of the CNTL quintiles defined in 
Table 5. Relative to CNTL, NOPM is 13.6% more likely 
to produce a worst GFS forecast in the NH and 35.6% 
more likely to do so in the SH. For best GFS forecasts, 
NOPM is 11.9% less likely to populate the upper 20% 
of CNTL scores in the NH and 18.6% less likely in the 
SH. OPS changes relative to CNTL are less dramatic 
but nonetheless consistent with previous statements 
associated with Fig. 6. The additional observations 
in OPS reduce the likelihood of worst GFS forecasts 
in both the NH (13.6%) and SH (10.2%) but have little 
overall impact on improving the best GFS forecasts in 
either hemisphere. Instead, reductions in frequencies 
of the lowest 40% of CNTL SH scores of 10.2% and 
13.8% show up as a large frequency increase (27.1%) 
in the middle quintile of the CNTL skill distribution.

SUMMARY AND DISCUSSION. An OSE using 
the NCEP GFS has been designed and executed to mea-
sure the potential impact of the loss of PM polar-orbit-
ing observations in the future 2O–4S configuration of 

3 The appellation “worst” is relative and may, in fact, be a very 
good score when compared to other or past forecast systems.
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the JPSS era. The control (CNTL) ingested observations 
from the operational GOS, including those from a polar-
orbiting MW (temperature and moisture) sounder and 
a hyperspectral IR sounder in both the mid-AM and 
PM orbits. The PM instrument data were removed from 
the NOPM run. Data used were from the operational 
observations received by NCEP in the period 2012–13.

Removing PM orbit satellite observations results in 
generally inferior standard scores in the NH and SH, 
with the impact being greater in the SH. The NOPM 
experiment has inferior mean anomaly correlation 
and RMS scores, and these differences are statistically 
significant in SON in the NH and in both SON and 
DJF in the SH. Precipitation, tropical wind scores, and 
hurricane track errors are not significantly impacted 
although the trend is toward some degradation. These 
results, including the larger SH impact and more signifi-
cant extratropical impact, are generally consistent with 
those from other OSEs over the last decade (Zapotocny 
et al. 2008; McNally 2012). Comparing the OSE CNTL 
with NCEP’s OPS, it appears that adding three AMSU-A 
MW sounders increases the mean Z500AC score incre-
mentally, but not significantly, in both hemispheres.

Analysis of the skill distributions for each of the 
CNTL, NOPM, and OPS runs is more revealing. 
Comparing CNTL and NOPM, removing the PM 
orbit data produces notable shifts toward increases 
in the number of low scores and clear decreases in 
the number of the highest scores. NOPM is 13.6% 
more likely to produce a worst GFS forecast in the 
NH and 35.6% more likely to do so in the SH. NOPM 
is 11.9% less likely to populate the upper 20% of the 
CNTL scores in the NH and 18.6% less likely in the 
SH. Comparing CNTL and OPS, there is a decrease 
in the likelihood of generating low scores in OPS of 
13.6% and 10.2% in the NH and SH, respectively. 
These numbers suggest that the three additional 
AMSU-A instruments add resilience to the GOS, con-
sistent with Andersson and Sato (2012). Furthermore, 
they suggest that an early-AM satellite, in particular, 
would add value and overall resilience to the GOS due 
to improved global data coverage over a 6-h period.

The skill distribution analysis demonstrates the 
well-known fact that the GFS (and any other opera-
tional forecast system) produces forecasts of variable 
skill from day to day. With an annual accumulation 
of scores to account for seasonal changes in forecast 
skill, it appears that the distributions are stable and 
well describe annual skill improvements due to scien-
tific development and observing system changes. In 
particular, improvements to the GFS over almost two 
decades have dramatically changed the distribution of 
scores, and similar shifts in skill distribution are seen 

by removing the PM orbit observations in this OSE.
On any given day, even when the GDAS is cycled 

from its preceding instance, the resulting forecast 
may have more or less skill, depending on many fac-
tors. Some of these factors are the synoptic meteorol-
ogy of that day; the accuracy of the initial analyses; 
the amount, type, and quality of observations; the 
ability of the quality control to remove erroneous 
observations and the ability of the observations to 
measure the key synoptic features; and the analysis 
and model accuracy for projecting the analysis for-
ward in time. All in all, the diversity and complexity 
of these factors conspire to make the predictability 
of a single forecast from a single forecast system a 
challenging task, even when ensemble techniques are 
introduced (e.g., Wobus and Kalnay 1995; Tan and 
Xie 2003). The skill distribution analysis for NOPM 
can be quantitatively interpreted as an increased risk 
of producing more forecasts in the low end of the 
CNTL skill distribution and a reduced probability 
of producing forecasts at the high end.

We suggest that this skill distribution analysis could 
be useful for users, in particular for operational fore-
casters who desire and appreciate documentation on 
the performance of the numerical guidance used every 
day. Changes in the likelihood of making the worst or 
best forecasts (namely, on either end of the skill dis-
tribution) could be beneficial for forecaster services. 
In particular, quantifying a change in the risk of using 
guidance with an enhanced (or reduced) probability 
of making a comparatively better (or worse) forecast 
should provide decision-making information.
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APPENDIX A: LIST OF OBSERVING SYS-
TEMS USED IN NCEP OPERATIONAL 
GLOBAL DATA ASSIMILATION SYSTEM IN 
2012–13. The GOS is an ever-changing collection of 
instruments and systems that provides observations 
to international NWP centers and also serves local 
government, industry, and public needs. It is important 
to keep track of all GOS changes in instrument type, 
number, quality, etc., since it is clear that operational 
forecast quality depends on these factors. The failure 
of a particular satellite instrument, for example, is 
only predictable statistically, as any instrument can 
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Fig. B1. Annual-mean NCEP GFS 5-day Z500AC scores 
from 1996 to 2013 in NH (blue) and SH (red).

exceed its designed lifetime or fail upon launch or soon 
thereafter, often with serious consequences due to the 
expense involved in its replacement.

Table A1 lists the types of observations, platforms, 
and instruments (or quantities and measurements) used 
operationally at NCEP during the period of this OSE.

APPENDIX B: CONTEXT 
FOR OBSERVING SYSTEM 
IMPACTS. It is informative to 
place observing system impacts, as 
demonstrated by OSEs, in context 
with the long-term skill improve-
ments to operational global forecast 
systems, such as the NCEP GFS, as 
documented by a standard and rep-
resentative score such as Z500AC. 
The Z500AC is a representative 
score since it measures the skill of 
forecast of high and low pressure 
locations and the vertically averaged 
atmospheric state, and furthermore 
it has a long history as a performance 
metric. Other scores (such as root-
mean-square error) tend to move in 
tandem with Z500AC, while scores 
for precipitation and hurricane track 
and intensity are more specialized 
and tend to measure less representa-
tive aspects of atmospheric behavior.

Operational NWP centers are 
constantly improving their analysis 
and forecast systems. System im-
provements can result from scientific 
development of their many complex 
components. Development areas in-
clude but are not limited to increased 

quantity and quality of ingested observations from the 
GOS; improvements to the data assimilation and qual-
ity control algorithms and procedures; and improve-
ments to various aspects of the forecast model, such 
as the representation of physical processes, increasing 
horizontal and vertical resolution, and increasing 
computational efficiency. Increased computational 
efficiency is important because it enables more sophis-
ticated science to be added while maintaining the same 
computational cost in operations.

The average improvement rate for operational 
global forecast systems is approximately one day of 
skill per decade (Simmons and Hollingsworth 2002); 
that is, the average skill of today’s 5-day forecast is as 
good as that of a 4-day forecast produced a decade 
ago. The skill of the NCEP GFS has improved at the 
same rate, with average mean-annual increases in 
Z500AC of 0.007 (NH) and 0.010 (SH) as shown in 
Fig. B1. These increases in skill were due to the accu-
mulated value of system improvements such as those 
noted above. For example, GFS horizontal resolution 
increases occurred in 1998 (100–70 km), 2002 (55 km), 

Fig. B2. As in Fig. 6, but for NCEP operational GFS 5-day forecasts 
at 0000 UTC, compiled annually from 1996 to 2014.
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2005 (38 km), 2010 (23 km), and 2015 (13 km), and 
all were enabled by operational high-performance 
computing (HPC) increases and enhanced computa-
tional efficiency. Most of these horizontal-resolution 
changes resulted in higher annual scores the next year 
in one or both hemispheres (Fig. B1), even though 
other system changes undoubtedly contributed.

Distributions of GFS forecast skill for each year over 
the period 1996–2014 (Fig. B2) provide even more 
information on the impact of improvements. Despite 
some minor year-to-year variability in forecast skill due 
to different weather patterns and despite the fact that 
GFS upgrades occurred irregularly over this period, it 
is generally apparent that each annual skill distribution 
is unique to the GFS of that particular year. Notably, 
as annual-mean scores have increased, their skill dis-
tributions are characterized by a reduced frequency of 
low scores and an increased frequency of high scores. 
Contrast, for example, the distributions for NH over 
1997–99 and 2012–14: Scores in the range 0.525–0.625 
constituted 16%–18% of the total in the earlier period 
but 1% in the most recent years. From 1997 to 1999, 
the GFS scores did not reach 0.925 but, in each year of 
2012–14, 30%–35% of the NH scores did so.

As a forecast system improves its ability to extract 
observational information through its DAS and 
increase its forecast skill through a better model, it 
becomes more resilient to changes in the observing 
system and less likely to produce forecasts in the lower 
range of scores.
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